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SUMMARY

An analysis is made for determination of the number of eigenvalues
and the eigenvalue density of conical shells over a wide range of cone
geometries. The Galerkin method is used to determine a frequency
equation. Values predicted by this closed form solution show favorable
agreement with experimental results available in the literature. The
frequency equation is then expressed in terms of wave numbers and the
k-space geometry is obtained. A numerical integration procedure for
determination of the cumulative number of modes from the k-space is
developed. A comparison is made of values obtained from an actual count
of the eigenvalues predicted by the frequency equation and this procedure
shows a high degree of correlation with the k-space integration technique.
Using finite differences in conjunction with the k-space integration,
the eigenvalue density is obtained. The influence of variations in cone
angle, thickness, and truncation are found to be significant. The results
of the study are normalized with respect to geometric parameters and
expressions covering a wide range of configurations are presented in

graphical form.




INTRODUCTION

The problem of determining the eigenvalues of an elastic shell con-
tained in a given frequency domain can be divided into several parts.
First, the differential equations for the shell in question must be devel-
oped [1]. Secondly, the differential equations must be handled in such
a way that an explicit frequency equation is obtained for the shell. 1In
the case of the conical shell this has been done [2] using the Galerkin
method in conjunction with a first order series expression for the normal
displacement and the stress function which occur as the dependent vari-
ables in the differential equations. Finally using the frequency equa-
tion, the expression for the number of eigenvalues and then the modal
density must be developed.

The technique used in this paper for the determination of the
eigenvalues contained in a given frequency interval is the k-space inte-
gration technique [3]. The technique has been used successfully in the
investigation of several other shell geometries [4,5,6].

It should be pointed out that since the frequency equation used [2]
in this paper is approximate, values predicted were checked against
experimental values recorded in the literature [7], and favorable agree-

ment was obtained.

THEORETICAL DEVELOPMENT

The differential equations used to obtain a frequency equation pre-

sented in Reference [2] are as follows:
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where ¢ is the stress function and w is the normal displacement.

The development of these equations is based on extensional vibra-
tions of the conical shell. It is also assumed that the mode shapes
are axially symmetric and that longitudinal bending is small when com-
pared with circumferential bending. These equations may be solved {2]
by use of the Galerkin method to obtain a frequency equation of the

form
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Introducing the dimensionless frequency parameter A, and the
longitudinal and circumferential wave numbers kl and k2 respectively,

equation (2) may be written in the form
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where

The number of eigenvalues may be expressed as the double integral,

in the case of shells, over the so called k-space or wave number space

(2)

(3)




defined by the frequency equation of the shell [31. Therefore the number
v q ¥ eq

of eigenvalues (N) may be written in the form:
N = ——~——- [ [ dk, dk (4)

Inserting the appropriate values for Akl and Akz, rearranging terms

and integrating once equation (4) becomes

]
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In the relationship given by equation (5) it should be noted that
kz is a function of both kl and A. The functional dependence involved
is obtained from the frequency equation.
Rearranging terms and collecting powers of k2 in equation (3) it
is found that the frequency equation is a simple quadratic in powers of
kza. Therefore k2 may be expressed explicitly as a function of kl and
A in the following form.
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Sufficient information is now available to describe the geometry of
the wave number space. In equation (6) the positive and negative square

roots indicated give the upper and lower bound of the space respectively.




Figure 1 shows a typical k-space for an open or truncated cone with A as
a parameter, and Figure 2 shows a typical k-space for a closéd cone with
A again as the parameter.

By equating the upper and lower bounds of the k-space given by equa-
tion (6) the limits of the space may be found as functions of the dimen-

sionless frequency A. The resulting expression is a cubic in kl .
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The solution of this cubic equation in the case of the typical open
cone geometry (Figure 1) yields three real roots, and the solution in the
case of the typical closed cone geometry (Figure 2) yields one real root
and two imaginary roots. In the latter case the real part of the imaginary
roots correspond to the value of kl where the upper and lower bounds are

at a minimum.

NUMERICAL EVALUATION

The evaluation of the integral was accomplished using numerical

integration techniques with the integral in the following form.
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In equation {8) a and b represent the upper and lower bounds of the
k-space as determined by the solution of equation (7), also accomplished
by numerical techniques. In the case of the typical truncated cone b
is the largest real root obtained, and a is the second largest. In the
case of the typical closed cone, b is the one real root, and a is the
real part of either imaginary root. This then corresponds to integration
over the closed portion of the k-space or over the nearly closed portion.
The numerical evaluation was conducted for a variety of cone geome-
tries so that effects of cone angle, shell thickness, and degree of
truncation could be examined. Values of N corresponding to numerous
values of A were calculated so the relationship of N to A could be
plotted for each cone examined. Figures 3 through 5 show the results
of these caléulations.

Careful study of Figures 3 through 5 indicated that the dimension-

m

less number of modes (N ~
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varies with changes in cone
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, with changes in thickness inversely as

/4

angle directly as (tan w)l

and with changes in truncation inversely as (l~ul)l Hence the
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number of modes may be normalized in the following manner.
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Figures 6 through 8 show graphically the results of this normal-
ization procedure. Examination of the figures indicates that, with the
exception of variations near the first few modes (N ® 1), £(i) is
independent of the geometry of the cone and is a function of only the

dimensgionless frequency.



Using finite difference techniques on the result of the k-space
integration in order to obtain the density of modes with respect to
frequency, a graphic representation of the modal density (n = dN/dA)
is obtained. The normalized results of these calculations are presented

in Figures 9 through 11 in the following form.
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With the exception of small variations in the vicinity of values
associated with N ® 1, F(A) is also independent of geometry, as was
£F(A).

Since the k-space integration presented in this paper avoids the
portion of the space near kl = (0 there is some question as to the
validity of the results. In order to provide a check of the work pre-
sented here the following numerical check was used. Using equation (2),
a very large number of frequencies were calculated and the number
occurring below certain dimensionless frequencies was obtained and
normalized. The wave numbers n and m were increased until no further
increase in the count was obtained. The results of these computations
were in excellent agreement with the k~space integration results. Hence
the omission of a portion of the k-space in this case seems to be justi-

fiable. It should be pointed out that the portion neglected was unbounded.

CONCLUSTIONS

The number of eigenvalues and the eigenvalue density have been obtained
on the bases of the frequency equation presented in this paper. Results

have been normalized and presented in graphical form as independent of



cone geometry. Approximate numerical expressions for the number of

eigenvalues and the eigenvalue density are given by,
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DEFINITION OF TERMS

Youngs modulus of shell material

Thickness of shell

Dimensionless coordinate = x/L

Number of waves in circumferential direction m =2, 3, 4 .
1/2 included cone angle

Stress function

Normal displacement

Shell stiffness = Eh3/12 a - vz)

Density of shell

Length of shell (slant length to cone apex)
Frequency of vibration

2 1 - vz) =2

h2/12 L ;
EhL

nr/ (1 - al)

Dimensionless frequency

Longitudinal wave number

Circumferential wave number

Number of eigenvalues or modes

Density of eigenvalue or modal density

Number of longitudinal half waves n =1, 2, 3 . . .
Poisions ratio

Dimensionless truncation. Lt/L

Truncation length (slant length from top of cone to apex)

Coordinate along shell surface
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FIGURE 1. CIRCUMFERENTIAL WAVE NUMBER (kz) VERSUS

LONGITUDINAL WAVE NUMBER (k,), PARAMETER X
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FIGURE 2. CIRCUMFERENTIAL WAVE NUMBER (k,) VERSUS
LONGITUDINAL WAVE NUMBER (k,), PARAMETER A
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WITH ANGLE (¢ ) AS THE PARAMETER
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FIGURE 6. NORMALIZED NUMBER OF MODES VERSUS DIMENSIONLESS
FREQUENCY WITH CONE ANGLE AS THE PARAMETER
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FIGURE 7. NORMALIZED NUMBER OF MODES VERSUS DIMENSIONLESS
FREQUENCY WITH THICKNESS RATIO AS THE PARAMETER
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FIGURE 9. DENSITY OF MODES (NORMALIZED) VERSUS DIMENSIONLESS FREQUENCY WITH CONE

ANGLE AS THE PARAMETER



10.0

R

n
(NORMALIZED)
1.O |—
— rd
o 4
s L=36"
B h=o0.01" 7,7
- s = o
,/,5’ / \lf 30
- f /I// ’h- "
B S0 4 N=0S80 @,=0.333
//’ ¢,/ h=0.20"
s
, 0 ¢ h=ous™  ——m—— INDICATES N<¢2
¢+ / h=0.0"
B h=0.06"
0.2|-h=0.03"
] L1 1 1111l I o1 1 i1tl ] | N B
O.1 1.O 10.0

FIGURE 10.

DENSITY OF MODES (NORMALIZED)

THE THICKNESS RATIO AS THE

VERSUS DIMENSIONLESS

PARAMETER

FREQUENCY WITH



00 /

a,=0.0—0.667

T

[

n

(NORMALIZED)

1.O —
- L =36"
B Y =30°
I~ 07833 h =0.06"
- $e:00 INDICATES N¢2

o2 NI EEEE L Ll Ll Ll
O.1 [.0 10.0 {00

A
FIGURE II. DENSITY OF MODES (NORMALIZED) VERSUS DIMENSIONLESS FREQUENCY WITH

THE TRUNCATION RATIO AS THE PARAMETER





